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Abstract
The elastic, electronic and some thermodynamic properties of the non-oxide perovskite type
superconductor MgCNi3 under pressure are investigated by first-principles calculations. With
the local density approximation as well as the generalized gradient approximation for exchange
and correlation, the ground state properties and equation of state are obtained, which agree well
with both theoretical calculations and experiments. By the elastic stability criteria, we predict
that MgCNi3 is not stable above 58.4 GPa. Moreover, from the calculated pressure dependence
of Debye temperature and electronic properties, the cause of the enhancement of Tc with the
increasing pressure is analyzed.

1. Introduction

Followed by the discovery of MgB2 [1], observations of
superconductivity in another intermetallic compound MgCNi3
(with a critical temperature Tc of 8 K) [2] have aroused
great interest among scientists for its many puzzling physical
properties. The compound has the classical cubic perovskite
structure with space group Pm3̄m. In the crystal structure of
MgCNi3, the atoms occupy the positions: Mg (0; 0; 0), C
(1/2; 1/2; 1/2) and Ni (0; 1/2; 1/2). The high proportion
of Ni atoms in the unit cell suggests the possibility of magnetic
interactions, which may play a dominant role in explaining the
superconductivity [2].

Electronic structure calculations of MgCNi3 [3–8] showed
a large narrow density of states (DOS) peak in the vicinity
of the Fermi level (EF). The DOS at EF is not large enough
to induce magnetic instability [5], but is associated with the
superconducting properties [7]. Since the peak is located just
below EF, substitution in MgCNi3 is expected to change its

4 Author to whom any correspondence should be addressed.

electronic properties significantly. Numerous efforts [9–17]
have been made with hole-doped MgCNi3 in an attempt to
shift the Fermi level, thereby leading an increase of the DOS
at EF, whereupon Tc was found to decrease. Using pressure,
some groups successfully enhanced the Tc, but the cause is still
controversial. Kumary et al [9] considered that the increase
in Tc with pressure is due to a lattice softening or a structural
phase transition. Yang et al [18] thought it can be explained
mainly by the increase of DOS with pressure, while Garbarino
et al [19] speculated that the increase of Tc is due to a reduction
of the magnetic character.

In addition, some experiments have been performed
for such a complicated system under high pressure. By
means of synchrotron x-ray powder diffraction, Loa et al
[20] investigated the structural stability of MgCNi3 up to
30 GPa, Zhang et al [21] and Kumar et al [22] studied the
structural behavior of MgCNi3 at pressures up to 22 and
32 GPa, respectively. They concluded that the structure
of the compound remains in the Pm3̄m cubic symmetry
throughout the applied pressure range. However, there are
significant uncertainties in the experimental compressibility
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data of MgCNi3 and whether the compound is stable under a
pressure higher than 32 GPa remains unknown.

In this work, we focus on the structural, elastic, electronic
and thermodynamic properties of MgCNi3 under pressures up
to 60 GPa by using first-principles calculations. The elastic
properties of MgCNi3 under high pressure are investigated for
the first time, from which we will investigate its mechanical
stability. Moreover, from the obtained pressure dependences
of the Debye temperature and the electronic properties of
MgCNi3, we will make an analysis of the increase in Tc with
pressure. In section 2, we give a brief description of the
theoretical method. The results of structural, elastic, electronic
and thermodynamic properties of MgCNi3 under pressure are
presented in section 3. A conclusion is drawn in the last
section.

2. Theoretical methods

2.1. Total energy electronic structure calculations

In the electronic structure calculations, the ultrasoft pseudopo-
tentials introduced by Vanderbilt [23] have been employed
for all the ion–electron interactions, together with both the
local density approximation (LDA) proposed by Vosko et al
[24] and the generalized gradient approximation (GGA) [25]
for the exchange–correlation function. A plane-wave basis
set with energy cut-off 400 eV is applied. Pseudo-atomic
calculations are performed for Mg 3s2p, C 2s2p and Ni
4s3d. For the Brillouin zone sampling, we use a 8 × 8 × 8
Monkhorst–Pack mesh. The self-consistent convergence of
the total energy is 10−6 eV/atom. Hydrostatic pressure, cou-
pled with the variable cell approach, is applied within the
Parrinello–Rahman method [26, 27] to perform a full optimiza-
tion of the cell structure for each target external pressure. All
these total energy electronic structure calculations are imple-
mented through the Cambridge Serial Total Energy Package
(CASTEP) code [28, 29].

2.2. Elastic properties

The elastic stiffness tensor is related to the stress tensor and
the strain tensor by Hooke’s law. Since the stress and strain
tensors are symmetric, the most general elastic stiffness tensor
has only 21 non-zero independent components. For a cubic
crystal, these are reduced to three components, i.e. C11, C12,
and C44. These elastic stiffness coefficients (namely the
elastic constants) can be determined by computing the stress
generated by applying a small strain to an optimized unit
cell [30].

The Debye temperature may be estimated from the
average sound velocity Vm [31]

� = h

k

[
3n

4π

(
NAρ

M

)]1/3

Vm, (1)

where h is Planck’s constants, k is Boltzmann’s constant, NA is
Avogadro’s number, n is the number of atoms per formula unit,

M is the molecular mass per formula unit, ρ is the density, and
Vm is obtained from [31]
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[

1

3

(
2

V 3
s

+ 1

V 3
l
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, (2)

where Vs and Vl are the shear and longitudinal sound velocities,
respectively.

For a cubic structure MgCNi3, the bulk modulus B and the
shear modulus G are taken as

B = (C11 + 2C12)/3 (3)

G = (3C44 + C11 − C12)/5. (4)

Then the Young’s modulus E and the Poisson’s ratio σ are
given by

E = 9BG

3B + G
(5)

σ = 1
2 (1 − E/3B). (6)

The shear and longitudinal sound velocities Vs and Vl are
obtained from Navier’s equation as follows [32]

Vs =
√

G

ρ
, Vl =

√(
B + 4

3
G

) /
ρ. (7)

2.3. Thermodynamic properties

To investigate the thermodynamic properties of MgCNi3, we
apply the quasi-harmonic Debye model [33], in which the
phononic effect is considered, and the non-equilibrium Gibbs
function G∗(V ; P, T ) takes the form

G∗(V ; P, T ) = E(V ) + PV + AVib(�(V ); T ) (8)

where E(V ) is the total energy per unit cell, PV corresponds
to the constant hydrostatic pressure condition, �(V ) is the
Debye temperature, and the vibrational contribution Avib can
be written as

AVib(�; T ) = nkT

[
9

8

�

T
+ 3 ln(1 − e−�/T ) − D(�/T )

]
,

(9)
where the D(�/T ) represents the Debye integral, n is the
number of atoms per formula unit, and � is the Debye
temperature defined by equation (1).

By solving the following equation with respect to V(
∂G ∗ (V ; P, T )

∂V

)
P,T

= 0 (10)

one can obtain the thermal expansion coefficient α as follows

α = γ CV /(BT V ), (11)

where the isothermal bulk modulus BT , the heat capacity CV

and the Grüneisen parameter γ are expressed as

BT (P, T ) = V

[
∂2G ∗ (V ; P, T )

∂2V 2

]
P,T

(12)

CV = 3nk

[
4D(�/T ) − 3�/T

e�/T − 1

]
(13)

γ = −d ln �(V )

d ln V
. (14)
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Table 1. Lattice constants (Å), bulk modulus B0 (GPa) and its pressure derivative B ′
0 of MgCNi3 at 0 GPa and 0 K.

Present work Other work

GGA LDA GGA LDA Experiments

a 3.833 3.752 3.83a, 3.813b, 3.82c 3.713b, 3.74c, 3.76d 3.810e, 3.81f

B0 170.4 203.2 172.2a, 168.4b, 180.5(13)e 202.5b, 210g, 202h 184(5)e, 156.9f, 267.8(7)i

B ′
0 4.49 4.42 4.25b, 4.12(5)e 4.20b, 4.49h 2.9(5)e, 9.8f, 4i

a Reference [36]; b Reference [35]; c Reference [37]; d Reference [38]; e Reference [20];
f Reference [22]; g Reference [9]; h Reference [39]; i Reference [21].

3. Results and discussion

3.1. Structure and equation of state

For the non-oxide perovskite type superconductor MgCNi3,
a series of lattice constants a are set to obtain the total
energy E and the corresponding primitive cell volume V
through both the GGA and the LDA schemes, and then
the obtained E–V data are fitted to the Birch–Murnaghan
equation of state (EOS) [34]. In table 1, the obtained
equilibrium lattice constants a, zero-pressure bulk modulus B0

and its pressure derivative B ′
0 are summarized, together with

the available experimental data [20–22] and other theoretical
results [9, 35–39]. It is easily found that almost all the
theoretical calculations for the lattice constants by GGA are
overestimated, and those by LDA are underestimated. The
calculated results by GGA are a somewhat better than those
by LDA.

We note that there are great discrepancies among the
experimental and theoretical data. Through the EDXRD
experiment, Zhang et al [21] reported the zero-pressure bulk
modulus B0 to be 267.8(7) GPa, which is significantly larger
than other conclusions both from theory and experiment. The
possible reason for this high value may be due to the inaccuracy
in estimating the ambient unit cell volume, and as there is no
use of pressure medium reported, the distortions induced on
the unit cell may be due to the non-hydrostatic stress coupled
with local distortions. Furthermore, B ′

0 = 9.8 is given by
Kumar et al [22], which is also distinctly larger than other
data. Our calculations are in agreement with most of them. In
figure 1, we illustrate the normalized cell volume dependence
with pressure for MgCNi3, together with the experimental data
of P = 0–28 GPa [19] and P = 0–22 GPa [21]. Our results
from both LDA and GGA methods are in good agreement with
the experimental data by Kumar et al [22] at low pressure
(<20 GPa), while at higher pressure (>20 GPa), the LDA
results seem to be better than the GGA results. There are large
discrepancies between our results and the experimental data by
Zhang et al [21], especially at higher pressures.

3.2. Elastic constants

The elastic constants C11, C12, and C44 of MgCNi3 at 0 GPA
and 0 K are listed in table 2. It can be seen that our calculations
are consistent with those reported by Vaitheeswaran et al
[35], who performed their calculations by the all-electron full-
potential linear muffin-tin orbital (FP-LMTO) method. Due
to an underestimate of the lattice constant, the elastic constant

Figure 1. Calculated equation of state of MgCNi3 together with the
experimental data from Zhang et al [21] and Kumar et al [22].

Table 2. Calculated elastic constants (GPa), bulk modulus B (GPa),
Young’s modulus E (GPa), shear modulus G (GPa), and Poisson
ratio σ at 0 GPa and 0 K.

C11 C12 C44 B E G σ

GGA 313.2 102.2 40.6 172.6 176.9 66.5 0.329
342.4a 81.4a 44.5a 204.7a 78.9a 0.297a

LDA 378.5 122.0 43.0 207.5 205.8 77.1 0.335
421.1a 93.3a 49.9a 247.7a 95.5a 0.296a

Exp 154.15b 57.98b 0.33b

a Reference [35]; b Reference [40].

calculated by LDA are larger than those by GGA. Since C11,
C12 and C44 comprise the complete set of elastic constants for a
cubic system, the bulk modulus B , Young’s modulus E , shear
modulus G and Poisson ratio υ can thus derived from them.
All of these values are also listed in table 2. Our results seem
to be better than those by others.

The bulk modulus calculated from elastic constants are
very close to those obtained from EOS. Compared with
the experimental data, the Young’s modulus, shear modulus
and Poisson ratio obtained are better than those given by
Vaitheeswaran et al [35], especially for the Poisson ratio,
which is almost the same as the experimental result [40].
By analyzing the ratio between bulk modulus and shear
modulus, Vaitheeswaran et al [35] concluded that MgCNi3 is
intermediate between brittle and ductile in nature. The Poisson
ratio obtained offered good evidence for such a conclusion;
according to Frantsevich’s rule [41], the critical value of

3



J. Phys.: Condens. Matter 20 (2008) 325228 W Zhang et al

Figure 2. The dependences of elastic constants of MgCNi3
on pressure.

Poisson ratio of a material is 1/3. For brittle materials, the
Poisson ratio is less than 1/3, and values larger than 1/3 can
be regarded as ductile materials. The Poisson ratio in present
work is 0.329 (GGA) and 0.335 (LDA). Both of them are very
close to the critical value. Therefore, MgCNi3 indeed locates
the exact border between two type materials. However, as the
pressure increases the Poisson ratio will become larger than
1/3. This indicates that MgCNi3 will become more ductile
under high pressure.

The elastic constants of MgCNi3 under pressure, obtained
for the first time, are illustrated in figure 2. It is seen that C11,
C12, C44 and B0 increase with the enhancement of pressure.
The change of C11 is more sensitive to pressure than other
three, while C44 is the most unresponsive one. As is known,
for a cubic crystal, the mechanical stability under isotropic
pressure is judged from the following condition [42]

C̃44 > 0, C̃11 > |C̃12|, C̃11 + 2C̃12 > 0, (15)

where C̃αα = Cαα − P (α = 1, 4), C̃12 = C12 + P . By
fitting the C̃44 data to second-order polynomials, we have the
following relations

C̃44 = 41.0738 − 0.595 52P − 0.001 78P2. (16)

When the applied pressure is above 58.4 GPa, C̃44 > 0
is no longer fulfilled, indicating that MgCNi3 is not mechanical
stable at pressures above 58.4 GPa, which requires a
confirmation from experiment. From the obtained elastic
constants at 0 GPa and 0 K, the Debye temperature and
sound velocities (including longitudinal, shear and average
wave velocities) can thus be derived. These are listed in
table 3, together with other theoretical results [35] and the
experimental data [15, 40, 41, 44] for our comparison. Our
results are also better than other theoretical data.

Elasticity, being a fourth-rank tensor property, is
anisotropic for a cubic crystal. It is conveniently expressed by
the dimensionless parameter A = [(2C44 + C12)/C11] − 1.
Through the calculated elastic constants, we can obtain the

Figure 3. Electronic band structures of MgCNi3 along the high
symmetry directions: (a) at 0 GPa, and (b) at 58.4 GPa.

Table 3. Calculated longitudinal, shear and average wave velocity
(vl, vs and vm) in m s−1 and the Debye temperature � in K from the
average elastic wave velocity of MgCNi3 at 0 GPa and 0 K.

Vl Vm Vs �

GGA 6458 3654 3259 283.7
6555a 3920a 3521a 306.2a

LDA 6818 3813 3398 302.4
7199a 4324a 3874a 337a

Exp 6090b 3070b 287c 292d 351e

a Reference [35]; b Reference [40];
c Reference [41]; d Reference [44];
e Reference [15].

elastic anisotropic parameter A at different pressures. It is
found that the anisotropic parameter A of MgCNi3 remains
negative in the entire range of pressure studied and increases
with increasing pressure, as opposed to MgO, which becomes
elastically isotropic at about 21 GPa [43].

3.3. Electronic band structures

The band structures of MgCNi3 along the symmetry line of
the simple cubic Brillouin zone under 0 GPa are shown in
figure 3(a). It can be seen that MgCNi3 is metallic with two
bands, which have a mainly Ni 3d character crossing the Fermi

4
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Table 4. Densities of states at the Fermi level (states eV−1 f.u.−1).

0 GPa 58.4 GPa

Atoms s p d s p d

Mg 0.0002 0.1178 0.000 04 0.0707
C 0.0165 0.6126 0.015 4 0.6159
Ni 0.2019 0.4663 3.871 0.176 7 0.5664 3.392

level along the 
–M, 
–R and X–R symmetry directions. Both
of them are refined between −0.7 and 1.1 eV, consistent with
the results of Shim et al [3] and Okoye [36]. The lowest band
between −11 and −13.5 eV corresponds to C 2s states, while
the dispersive bands between −7 and −4 eV originate mainly
from C 2p states. Those bands just below the Fermi level
consist of hybridized Ni 3d and C 2p bands but predominantly
present Ni 3d character. As the applied pressure is 58.4 GPa,
the two valence bands intersect with the Fermi level much more
deeply, as is shown in figure 3(b). This behavior is expected to
account for a higher Tc in MgCNi3 at higher pressure.

The calculated N (EF) of the total DOS of MgCNi3 is
5.275 states eV−1 f.u.−1. This value can also be obtained with
other methods: 5.34 (LDA-LMTO) [3], 5.26 (TB-LMTO) [6],
4.99 (LAPW) [7], 6.4 (LDA-FLAPW) [45], and 4.665 (FP-
LMTO) [46]. The differences among the previous results of
N(EF) may arise from the different approximations. However,
our results maintain good agreement with most of them.
Moreover, the individual contributions to the DOS at EF under
0 and 58.4 GPa are collected in table 4. It is seen that the
N(EF) is mostly contributed by the Ni 3d and C 2p states,
and that the contributions from Mg 3s, 2p and C 2s states
are too small and can be ignored, which is comparable to the
results by Szajek [47]. As the applied pressure is 58.4 GPa,
the contributions from C 2p and Ni p states at the Fermi energy
show a slight increase. However, the N (EF) of Ni 3d states
reduce by 0.479 states eV−1 f.u.−1 which will lead a decrease
of the N(EF) of total DOS. It is found that the pressure makes
the peaks of the N (EF) of total DOS below Fermi level move
to the lower energies and decreases in height. However, the
pressure has little effect on the location of the peak at about
0.1 eV below Fermi level.

3.4. Thermodynamic properties

The dependences of isothermal and adiabatic bulk moduli (BT ,
BS) of MgCNi3 on temperature are illustrated in figure 4. It can
be found that BT and BS are nearly constant from 0 to 100 K
and then decrease almost linearly with increasing temperatures,
as is obvious from the relationship BS = BT (1 + αγ T ). BT

and BS coincide at low temperature and then diverge with
rising T . At room temperature, dBT /dT = −0.0355 GPa K−1

and dBS/dT = −0.0180 GPa K−1, respectively. It is found
that the relationships between bulk modulus and pressure are
nearly linear at various temperatures. The bulk modulus
decreases with increasing temperature at a given pressure and
increases with increasing pressure at a given temperature.
These results are due to the fact that the effect of increasing
pressure on the material is the same as that of decreasing
temperature on it.

Figure 4. Temperature dependence of isothermal (B0) and adiabatic
(BS) zero-pressure bulk modulus for MgCNi3.

Figure 5. Pressure (left) and temperature (right) dependences of the
Grüneisen parameter γ for MgCNi3.

The calculated heat capacity CV at ambient conditions is
118.8 J mol−1 K−1, a good agreement with the experimental
value 111.3 J mol−1 K−1 [40]. Except for a sudden jump
at the critical temperature, our results are also in good
agreement with the experimental results at low temperature
(�10 K) reported by He et al [2]. Furthermore, we find that
when the temperature is below 300 K, the heat capacity CV

is strongly dependent on temperature, which is due to the
anharmonic approximation. However, at higher temperatures,
the anharmonic effect on CV is suppressed, and CV is almost
constant at high temperature. The calculated dependences of
CV on temperature at different pressures do not show any
anomalous behavior in the temperature range of 0–800 K and
are similar to the superconducting compounds belonging to the
conventional superconductors group.

In figure 5, the variation of Grüneisen parameter γ with
pressure and temperature are displayed, from which it can be
found that the Grüneisen parameter γ decreases exponentially

5
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as the pressure increases just like the behavior of thermal
expansion coefficient α, however, as the pressure enhanced
the effect of temperature becomes more and more weak and
the three curves representing 0, 500, 800 K almost converge
together. Such a phenomenon is shown more clearly in
the right part of figure 5, which displays the dependence of
Grüneisen parameter γ on temperature. At zero pressure the
Grüneisen parameter γ obviously increases with temperature,
but at 30 and 55 GPa the tendency to increase becomes less.

3.5. Superconducting temperature

From the calculated pressure dependence of Debye tempera-
ture and N(EF) of total DOS, one can give an analysis of
the positive dTc/dP which is still controversial. In the BCS
strong coupling limit, the superconducting temperature Tc is
expressed by the McMillan formula [48]

Tc = �

1.45
exp

[
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (17)

where μ∗ denotes the Coulomb pseudopotential, which
describes the repulsive interaction between electrons, λ

is electron–phonon coupling constant, given by λ =
N(EF)〈I 2〉/M〈ω2〉, 〈I 2〉 is the average over the Fermi surface
of square of the electronic matrix element for electron–phonon
interaction, M is the ionic mass, and 〈ω2〉 is the square
averaged phonon frequency. If λ = 0.79 and μ∗ =
0.15 [49] are taken, together with the Debye temperature � =
283.7 K calculated by us in the GGA scheme, we obtain the
critical temperature Tc equals to 7.3 K, consistent with other
data [2, 49, 50].

It is noted that in equation (17) the critical temperature
Tc is strongly dependent on Debye temperature, however, the
dependence is complicated as it appears both in the linear and
exponential term (from the 〈ω2〉 term in the expression of λ,
as 〈ω2〉 = 0.5�2). In order to investigate how the variation
of the Debye temperature affects the dependence of Tc on
pressure, we assume other variables, i.e. N(EF), 〈I 2〉 and μ∗
are constants, with μ∗ = 0.15, and then make a numerical
analysis. As the pressure applied changes from 0 to 58.4 GPa,
the Debye temperature (calculated in GGA) increases from
283.7 to 377.3 K giving a positive factor making Tc grow to
be about 1.33 Tc in the linear term. On the other hand, in the
exponential term, the enhancement of � decreases λ to about
0.56 λ, which in turn makes Tc fall to about 0.079 Tc (assuming
the initial value of λ is 0.79). Thus it is obvious that the change
of � in the exponential term will be much more effective
than that in the linear term in determining Tc. Synthetically,
although with the same dependence of Tc on pressure, the
enhancement of Debye temperature plays a negative role in
the pressure dependence of Tc. Moreover, the N (EF) actually
decreases with increasing pressure, which will also decrease
the Tc. So if μ∗ is less pressure dependent, the change of
electronic contribution in electron–phonon interaction induced
by pressure should make a positive contribution to the increase
of Tc, i.e. as the pressure enhanced 〈I 2〉 increases.

4. Conclusions

In summary, the elastic properties of the non-oxide perovskite
type superconductor MgCNi3 under pressure have been
investigated by first-principles calculations for the first time.
With the local density approximation as well as the generalized
gradient approximation for exchange and correlation, the
ground state properties and equation of state of MgCNi3 were
obtained, which agree well with both theoretical calculations
and experiments. From the high pressure elastic constants, we
predict that MgCNi3 is not stable at a pressure above 58.4 GPa
and remains elastic anisotropic in the whole range of pressure
studied. Furthermore, some thermodynamic properties such
as the heat capacity and Grüneisen parameter are investigated
under different pressures and temperatures. From analysis
of the variation of Debye temperature and N(EF) with Tc,
we conclude that 〈I 2〉 will increase with increasing pressure,
which leads to a positive dTc/dP for MgCNi3.
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